Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1143853, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37538056

RESUMO

The development of nutrient-use efficient rice lines is a priority amidst the changing climate and depleting resources viz., water, land, and labor for achieving sustainability in rice cultivation. Along with the traditional transplanted irrigated system of cultivation, the dry direct-seeded aerobic system is gaining ground nationwide. The root-related traits play a crucial role in nutrient acquisition, adaptation and need to be concentrated along with the yield-attributing traits. We phenotyped an association panel of 118 rice lines for seedling vigour index (SVI) traits at 14 and 21 days after sowing (DAS), root-related traits at panicle initiation (PI) stage in polythene bags under controlled aerobic condition, yield and yield-related traits under the irrigated condition at ICAR-IIRR, Hyderabad, Telangana; irrigated and aerobic conditions at ARS, Dhadesugur, Raichur, Karnataka. The panel was genotyped using simple sequence repeats (SSR) markers and genome-wide association studies were conducted for identifying marker-trait associations (MTAs). Significant correlations were recorded for root length, root dry weight with SVI, root volume at the PI stage, number of productive tillers per plant, spikelet fertility, the total number of grains per panicle with grain yield per plant under irrigated conditions, and the total number of grains per panicle with grain yield per plant under aerobic condition. The panel was divided into three sub-groups (K = 3) and correlated with the principal component analysis. The maximum number of MTAs were found on chromosomes 2, 3, and 12 with considerable phenotypic variability. Consistent MTAs were recorded for SVI traits at 14 and 21 DAS (RM25310, RM80, RM22961, RM1385), yield traits under irrigated conditions (RM2584, RM5179, RM410, RM20698, RM14753) across years at ICAR-IIRR, grain yield per plant (RM22961, RM1146) under the aerobic condition, grain yield per plant at irrigated ICAR-IIRR and SVI (RM5501), root traits at PI stage (RM2584, RM80, RM410, RM1146, RM18472). Functionally relevant genes near the MTAs through in-silico expression analysis in root and panicle tissues viz., HBF2 bZIP transcription factor, WD40 repeat-like domain, OsPILS6a auxin efflux carrier, WRKY108, OsSCP42, OsMADS80, nodulin-like domain-containing protein, amino acid transporter using various rice expression databases were identified. The identified MTAs and rice lines having high SVI traits (Langphou, TI-128, Mouli, TI-124, JBB-631-1), high yield under aerobic (Phouren, NPK-43, JBB-684, Ratnamudi, TI-112), irrigated conditions (KR-209, KR-262, Phouren, Keibi-Phou, TI-17), robust root traits like root length (MoirangPhou-Angouba, Wangoo-Phou, JBB-661, Dissi, NPK-45), root volume (Ratnachudi, KJ-221, Mow, Heimang-Phou, PUP-229) can be further employed in breeding programs for the targeted environments aimed at improving seedling vigour, yield-related traits under irrigated condition, aerobic condition as adaptability to water-saving technology.

2.
Front Plant Sci ; 14: 1298083, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38317832

RESUMO

Lodging resistance in rice is a complex trait determined by culm morphological and culm physical strength traits, and these traits are a major determinant of yield. We made a detailed analysis of various component traits with the aim of deriving optimized parameters for measuring culm strength. Genotyping by sequencing (GBS)-based genome-wide association study (GWAS) was employed among 181 genotypes for dissecting the genetic control of culm strength traits. The VanRaden kinship algorithm using 6,822 filtered single-nucleotide polymorphisms (SNPs) revealed the presence of two sub-groups within the association panel with kinship values concentrated at<0.5 level, indicating greater diversity among the genotypes. A wide range of phenotypic variation and high heritability for culm strength and yield traits were observed over two seasons, as reflected in best linear unbiased prediction (BLUP) estimates. The multi-locus model for GWAS resulted in the identification of 15 highly significant associations (p< 0.0001) for culm strength traits. Two novel major effect marker-trait associations (MTAs) for section modulus and bending stress were identified on chromosomes 2 and 12 with a phenotypic variance of 21.87% and 10.14%, respectively. Other MTAs were also noted in the vicinity of previously reported putative candidate genes for lodging resistance, providing an opportunity for further research on the biochemical basis of culm strength. The quantitative trait locus (QTL) hotspot identified on chromosome 12 with the synergistic association for culm strength trait (section modulus, bending stress, and internode breaking weight) and grain number can be considered a novel genomic region that can serve a dual purpose of enhancing culm strength and grain yield. Elite donors in the indica background with beneficial alleles of the identified major QTLs could be a valuable resource with greater significance in practical plant breeding programs focusing on improving lodging resistance in rice.

3.
Plants (Basel) ; 11(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35270092

RESUMO

Major biotic stresses viz., bacterial blight (BB) and blast and brown plant hopper (BPH) coupled with abiotic stresses like drought stress, significantly affect rice yields. To address this, marker-assisted intercross (IC) breeding involving multiple donors was used to combine three BB resistance genes-xa5, xa13 and Xa21, two blast resistance genes-Pi9 and Pi54, two BPH resistance genes-Bph20 and Bph21, and four drought tolerant quantitative trait loci (QTL)-qDTY1.1, qDTY2.1, qDTY3.1 and qDTY12.1-in the genetic background of the elite Indian rice cultivar 'Krishna Hamsa'. Three cycles of selective intercrossing followed by selfing coupled with foreground selection and phenotyping for the target traits resulted in the development of 196 introgression lines (ILs) with a myriad of gene/QTL combinations. Based on the phenotypic reaction, the ILs were classified into seven phenotypic classes of resistance/tolerance to the following: (1) BB, blast and drought-5 ILs; (2) BB and blast-10 ILs; (3) BB and drought-9 ILs; (4) blast and drought-42 ILs; (5) BB-3 ILs; (6) blast-84 ILs; and (7) drought-43 ILs; none of the ILs were resistant to BPH. Positive phenotypic response (resistance) was observed to both BB and blast in 2 ILs, BB in 9 ILs and blast in 64 ILs despite the absence of corresponding R genes. Inheritance of resistance to BB and/or blast in such ILs could be due to the unknown genes from other parents used in the breeding scheme. Negative phenotypic response (susceptibility) was observed in 67 ILs possessing BB-R genes, 9 ILs with blast-R genes and 9 ILs harboring QTLs for drought tolerance. Complex genic interactions and recombination events due to the involvement of multiple donors explain susceptibility in some of the marker positive ILs. The present investigation successfully demonstrates the possibility of rapid development of multiple stress-tolerant/resistant ILs in the elite cultivar background involving multiple donors through selective intercrossing and stringent phenotyping. The 196 ILs in seven phenotypic classes with myriad of gene/QTL combinations will serve as a useful genetic resource in combining multiple biotic and abiotic stress resistance in future breeding programs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...